Shape-memory porous alginate scaffolds for regeneration of the annulus fibrosus: effect of TGF-β3 supplementation and oxygen culture conditions.
نویسندگان
چکیده
Disc herniation as a result of degenerative or traumatic injury is believed to be the primary instigator of low back pain. At present there is a lack of viable treatment options to repair damaged annulus fibrosus (AF) tissue. Developing alternative strategies to fill and repair ruptured AF tissue is a key challenge. In this work we developed a porous alginate scaffold with shape-memory properties which can be delivered using minimally invasive approaches and recover its original geometry once hydrated. Covalently cross-linked alginate hydrogels were created using carbodiimide chemistry, followed by a freeze-drying step to impart porosity and create porous scaffolds. Results showed that porous alginate scaffolds exhibited shape-memory recovery and mechanical behaviour that could be modulated depending on the cross-linker concentrations. The scaffold can be repeatedly compressed and expanded, which provides the potential to deliver the biomaterial directly to the damaged area of the AF tissue. In vitro experiments demonstrated that scaffolds were cytocompatible and supported cell seeding, penetration and proliferation under intervertebral-disc-like microenvironmental conditions (low glucose media and low oxygen concentration). Extracellular matrix (ECM) was secreted by AF cells with TGF-β3 stimulation and after 21days had filled the porous scaffold network. This biological matrix was rich in sulfated glycosaminoglycan and collagen type I, which are the main compounds of native AF tissue. Successful ECM deposition was also confirmed by the increase in the peak stress of the scaffold. However, the immaturity of the matrix network after only 21days of in vitro culture was not sufficient to attain native AF tissue mechanical properties. The ability to deliver porous scaffolds using minimal invasive approaches that can potentially promote the regeneration of AF defects provides an exciting new avenue for disc repair.
منابع مشابه
Effect of Platelet-Rich Plasma on Chondrogenic Differentiation in Three-Dimensional Culture
Platelet-rich plasma (PRP) may have the potential to enhance articular cartilage regeneration through release of growth factors including transforming growth factor isoforms. The purpose of this study was to investigate the potential for PRP to stimulate chondrogenic differentiation in three-dimensional PRP hydrogel constructs. Allogenic PRP was prepared using a double centrifugation protocol w...
متن کاملInduction of Chondrogenic Differentiation of Human Adipose-Derived Stem Cells with TGF-β3 in Pellet Culture System
Objective Adult stem cells which are derived from different tissues, with their unique abilities to self-renew and differentiate into various phenotypes have the potential for cell therapy and tissue engineering. Human adipose tissue is an appropriate source of mesenchymal stem cells with wide differentiation potential for tissue engineering research. In this study isolated stem cells from hum...
متن کاملIncreased Osteogenic Potential of Pre-Osteoblasts on Three-Dimensional Printed Scaffolds Compared to Porous Scaffolds for Bone Regeneration
Background: One of the main challenges with conventional scaffold fabrication methods is the inability to control scaffold architecture. Recently, scaffolds with controlled shape and architecture have been fabricated using 3D-printing. Herein, we aimed to determine whether the much tighter control of microstructure of 3DP PLGA/β-TCP scaffolds is more effective in promoting osteogenesis than por...
متن کاملFabrication of Porous Hydroxyapatite-Gelatin Composite Scaffolds for Bone Tissue Engineering
Background: engineering new bone tissue with cells and a synthetic extracellular matrix represents a new approach for the regeneration of mineralized tissues compared with the transplantation of bone (autografts or allografts). Methods: in this study, to mimic the mineral and organic component of natural bone, hydroxapatite (HA) and gelatin (GEL) composite scaffolds were prepared. The raw mater...
متن کاملComparison of the efficacy of Piascledine and transforming growth factor β1 on chondrogenic differentiation of human adipose-derived stem cells in fibrin and fibrin-alginate scaffolds
Objective(s):The aim of this study was to compare the chondrogenic induction potential of Piascledine and TGF-β1 on adipose-derived stem cells (ADSCs) in fibrin and fibrin-alginate scaffolds. Materials and Methods: Human subcutaneous adipose tissues were harvested from three patients who were scheduled to undergo liposuction. Isolated ADSCs were proliferated in a culture medium. Then, the cell...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Acta biomaterialia
دوره 10 5 شماره
صفحات -
تاریخ انتشار 2014